Automatic basal slice detection for cardiac analysis
نویسندگان
چکیده
Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction of the left ventricle. Despite all the effort placed on automatic cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, suffers from high interobserver variability. As a result, an automatic algorithm for basal slice identification is required. Guidelines published in 2013 identify the basal slice based on the percentage of myocardium surrounding the blood cavity in the short-axis view. Existing methods, however, assume that the basal slice is the first short-axis view slice below the mitral valve and are consequently at times identifying the incorrect short-axis slice. Correct identification of the basal slice under the Society for Cardiovascular Magnetic Resonance guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that utilizes the two-chamber view to determine the basal slice while following the guidelines. To this end, an active shape model is trained to segment the two-chamber view and create temporal binary profiles from which the basal slice is identified. From the 51 tested cases, our method obtains 92% and 84% accurate basal slice detection for the end-systole and the end-diastole, respectively.
منابع مشابه
Discriminative Joint Context for Automatic Landmark Set Detection from a Single Cardiac MR Long Axis Slice
Cardiac magnetic resonance (MR) imaging has advanced to become a powerful diagnostic tool in clinical practice. Automatic detection of anatomic landmarks from MR images is important for structural and functional analysis of the heart. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, context, around...
متن کاملFully automatic segmentation of short and long axis cine cardiac MR
Introduction Quantitative analysis of cardiac function requires delineation of the left ventricle (LV) in cine cardiac MR (CMR). Typically, this is done using short-axis (SA) images, however, acquisition of several long-axis (LA) views has become quite common. The latter can be used for the accurate and reproducible determination of the basal SA slice, known as one of the major inter-observer v...
متن کاملDetection of Cardiac Function Abnormality from MRI Images Using Normalized Wall Thickness Temporal Patterns
Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the maximum likel...
متن کاملImprovement of knowledge-based automatic slice-alignment method for cardiac magnetic resonance imaging
Background Automatic slice alignment allows images of the six standard cardiac planes as defined in the SCMR Image Acquisition Protocols to be obtained by simple and quick operation. Our previously reported method can detect these planes using ECG-gated breath-hold axial multislice images [1]. Achieving higher accuracy and greater robustness for variation in clinical images will lead to improve...
متن کاملComprehensive Segmentation of Cine Cardiac MR Images
A typical Cardiac Magnetic Resonance (CMR) examination includes acquisition of a sequence of short-axis (SA) and long-axis (LA) images covering the cardiac cycle. Quantitative analysis of the heart function requires segmentation of the left ventricle (LV) SA images, while segmented LA views allow more accurate estimation of the basal slice and can be used for slice registration. Since manual se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medical imaging
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2016